A Unified Variational Model for Single Image Dehazing
نویسندگان
چکیده
منابع مشابه
A Variational Framework for Single Image Dehazing
Images captured under adverse weather conditions, such as haze or fog, typically exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Unveiling the image structure under the haze layer and recovering vivid colors out of a single image remains a challenging task, since the degradation is depth-dependent and conventional methods are unable to handle thi...
متن کاملEnhanced Variational Image Dehazing
Images obtained under adverse weather conditions, such as haze or fog, typically exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Unveiling the image structure under the haze layer and recovering vivid colors out of a single image remains a challenging task, since the degradation is depth-dependent and conventional methods are unable to overcome t...
متن کاملImproving Dark Channel Prior for Single Image Dehazing
This paper proposes an improved dark channel prior for removing haze from images. Dark channel prior is an effective method for removing haze. Dark channel is an image in the same size as the hazy image which is obtained by dividing the RGB images into windows and for each window, the minimum of each R, G and B channels are calculated. Then again the minimum of these three values is calculated ...
متن کاملA Novel Unified Variational Image Editing Model
In this paper we propose a unified variational image editing model. It interprets image editing as a variational problem concerning the adaptive adjustments to the zeroand first-derivatives of the images which correspond to the color and gradient items. By varying the definition domain of each of the two items as well as applying diverse operators, the new model is capable of tackling a variety...
متن کاملGated Fusion Network for Single Image Dehazing
In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2894525